US009280423B1

a2 United States Patent

(10) Patent No.: US 9,280,423 B1

Mam 45) Date of Patent: Mar. 8, 2016
(54) MOUNTING BLOCK LEVEL BACKUP (58) Field of Classification Search
IMAGES CPC GOG6F 11/1469; GOGF 11/1448; GOG6F
11/1458; Y10S 707/99953
(71) Applicant: EMC Corporation, Hopkinton, MA USPC .o 711/161-162; 707/680—681
(Us) See application file for complete search history.
(72) Inventor: Neelabh Mam, Jodhpur (IN) (56) References Cited
(73) Assignee: EMC Corporation, Hopkinton, MA U.S. PATENT DOCUMENTS
Us) 2005/0216788 Al* 9/2005 Mani-Meitav etal. 714/6
2007/0300013 Al* 12/2007 Kitamura 711114
(*) Notice: Subject to any disclaimer, the term of this 2010/0106615 Al* 4/2010 Chadwick et al. 705/26
patent is extended or adjusted under 35 2012/0084523 Al* 4/2012 Littlefield et al. .. . 711/162
U.S.C. 154(b) by 195 days. 2012/0136831 Al* 52012 Wang 707/640
2014/0372384 Al* 12/2014 Longetal. ..o 707/679
(21) Appl. No.: 13/930,214 * cited by examiner
(22) Filed: Jun. 28, 2013 Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Novak Druce Connolly
Bove + Quigg LLP
Related U.S. Application Data
57 ABSTRACT
(63) Continuation of application No. 13/928.,629, filed on 7 .
Jun. 27. 2013. now abandoned. Approaches to enable a block level backup image to be
’ ’ mounted by the operating system even in cases where the
(51) Int.CL operating system does not have native support for the inter-
GO6F 12/00 (2006.01) faces to access the backup image. The mounting of the backup
GO6F 13/00 (2006.01) image exposes the file system on the backup image and allows
GOGF 1328 (2006.01) the user to perform granular file level recovery (FLR) when
GO6F 11/14 (2006.01) restoring data from the backup image. The mounting of the
GOG6F 3/06 (2006.01) image and enabling data to be read from the image is per-
(52) US.Cl formed by loading a kernel mode driver and a user mode data
CPC) GOGF 11/1412 (2013.01); GOGF 3/0644 feeder application onto the computing device. These two

(2013.01); GOGF 11/1448 (2013.01); GO6F
11/1458 (2013.01); GO6F 11/1469 (2013.01);
Y108 707/99953 (2013.01)

300

components interact with one another to enable input/output
(I/O) operations to be performed on the backup image.

17 Claims, 7 Drawing Sheets

Operating System 301

VO Manager 303 System Buffer
310
] capy
Kernsl Mode Driver data
Backup Volume 304
image 302

signai event

read data

cepy
dala

User Mode

| Bhared Memory

Application 306

"1 Section 305

U.S. Patent Mar. 8, 2016 Sheet 1 of 7 US 9,280,423 B1

%‘E a0

Backup Slorage

Server 104
M
P ™
k 3 Block ifexrgi Baciiup
Source Volume Application 103 | Backup Volume|
102 i Image 105 |
N

U.S. Patent Mar. 8, 2016 Sheet 2 of 7 US 9,280,423 B1

: : 200
Backup Voiume g
| Image 202 |

Operating System 201
Device Object : Kemel Mode
203 craste Driver 204
F
User Mode
Application
205

U.S. Patent Mar. 8, 2016 Sheet 3 of 7 US 9,280,423 B1

300

M read operation

i Operating System 301

/O Manager 303

l

Kernel Mode Driver

Backup Volume 304
image 302

signat

avent
write offset
and length

read data
k4 k. 4
; User Mode Shared Memory
Application 306 ¢ Section 305

FIG. 3A

U.S. Patent Mar. 8, 2016 Sheet 4 of 7 US 9,280,423 B1

300

Operating System 301

System Buffer

f
O Manager 303 310

| copy

§ Kerel Mode Driver | data
[Backup Volume 304
| image 302 e
signal event
read data
k. 4

copy
User Mode data Shared Memory
Application 306 Section 305

FIG. 3B

U.S. Patent

400

Mar. 8, 2016 Sheet 5 of 7

US 9,280,423 B1

Load a kernel mode driver on an operating
system of a computing device

f 401

|

Receive a read operation by the kernel mode
driver

f 402

Write the starting read offset and the length of

the read operation to a shared memaory section

ctween the kernel mode driver and a user mode
application

f 403

I

Signal an event from the kernel mode driver to
the user mode application, indicating that the
read operation has been received

VaS

U.S. Patent Mar. 8, 2016 Sheet 6 of 7 US 9,280,423 B1

[4)]
o
<

f 501
Dictect the event by the user mode application

4

Access the offset and length in the shared f 502

memory section and convert the offset from
volume level offset into disk level offset

4
Read data from a backup image by the user mode f 502
application according to the converted read offset

and length

|

Copy the data to the shared memory section by f 504
the user mode application

I

Signal an event to the kernel mode driver 505
indicating that the read operation has been f
performed

FIG. 5

U.S. Patent

US 9,280,423 B1

Mar. 8, 2016 Sheet 7 of 7
M Network
emory interface
604 Component
] 608
Procassor
602
Input Device

Display

606

812

%600

US 9,280,423 B1

1
MOUNTING BLOCK LEVEL BACKUP
IMAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This applicationis a continuation application of U.S. appli-
cation Ser. No. 13/928,629, filed Jun. 27, 2013, the entire
disclosure of which are incorporated herein by reference in
their entirety.

FIELD OF THE INVENTION

The various embodiments described herein relate gener-
ally to mounting storage devices in operating systems, and in
particular to enabling input/output (I/O) operations for data
stored in block level backup images.

BACKGROUND

Intoday’s computing environments, it is often desirable to
backup computer data by copying and archiving the data (e.g.,
creating a backup image) so that the data may be restored after
adata loss event (e.g., hardware failure, etc.). Generally, there
are at least two types of backup applications that are imple-
mented in this regard. File-level backup applications copy
data from a source location to a backup location on a file-by-
file basis regardless of where the data of the file is physically
stored. This means that the backup application attempts to
build and replicate the original file by reading the logical file
system present on the original location. The granularity of the
resulting backup entities for file-level backups is therefore
individual files. Block-level backup applications, on the other
hand, bypass the file system and perform backups of entire
volumes of data from the original location. One advantage of
bypassing the file system in such a manner is that there is no
penalty in performance in cases where the original location
contains large numbers of files (such performance impacts
may take place if file-level backup were to be used). As a
result of bypassing the file system, the granularity of the
resulting backup entity for block-level backups is therefore
the entire volume’s image (i.e., binary image).

When restoring data from backup, however, it is often
desirable to enable users to view and select which individual
files they would like to restore rather than requiring a full
restore of the entire volume, which can be substantial in size.
In order to perform such file-level recovery (FIR), the oper-
ating system must mount the backup image, thereby exposing
the file system of image. However, sometimes the operating
system does not support the mounting of certain types of
backup images, such as in cases when the backup images are
stored on storage servers that utilize interfaces for which the
operating system does not have support. This may create
problems or inefficiencies when the user would like to per-
form granular restore operations on a file-by-file basis.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, in
which:

FIG. 1 illustrates an example of a block level backup appli-
cation copying data from a source volume to create a block
level backup image, in accordance with various embodi-
ments;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates an example of a kernel mode driver cre-
ating a device object that will serve as a target of /O opera-
tions on the backup volume image, in accordance with vari-
ous embodiments;

FIG. 3A illustrates an example of receiving a read opera-
tion and processing the read operation using a kernel mode
driver and a user mode application, in accordance with vari-
ous embodiments;

FIG. 3B illustrates an example of the user mode application
completing the read operation shown in FIG. 3A, in accor-
dance with various embodiments;

FIG. 4 illustrates an example of a process for processing a
read operation by the kernel mode driver, in accordance with
various embodiments;

FIG. 5 illustrates an example of a process for processing
the read operation by the user mode application, in accor-
dance with various embodiments;

FIG. 6 illustrates a logical arrangement of a set of general
components of an example computing device that can be
utilized in accordance with various embodiments.

DETAILED DESCRIPTION

In the following description, various embodiments will be
illustrated by way of example and not by way of limitation in
the figures of the accompanying drawings. References to
various embodiments in this disclosure are not necessarily to
the same embodiment, and such references mean at least one.
While specific implementations and other details are dis-
cussed, it is to be understood that this is done for illustrative
purposes only. A person skilled in the relevant art will recog-
nize that other components and configurations may be used
without departing from the scope and spirit of the claimed
subject matter.

Systems and methods in accordance with various embodi-
ments described in this disclosure enable a block level backup
image to be mounted by the operating system even in cases
where the operating system does not have native support for
the interfaces (e.g., APIs) to access the backup image. The
mounting of the backup image exposes the file system on the
backup image and allows the user to perform granular file
level recovery (FLR) when restoring data from the backup
image. The mounting of the image and enabling data to be
read from the image is performed by loading a kernel mode
driver and a user mode data feeder application onto the com-
puting device. These two components (i.e., the kernel mode
driver and the user mode application) interact with one
another to enable input/output (I/O) operations to be per-
formed on the backup image.

In various embodiments, after a kernel mode driver is
loaded on an operating system of a computing device, the
kernel mode driver creates a device object in the operating
system to represent a disk type of device. This device object
will serve as the target of all I/O operations for the backup
image. Once the device objecthas been created, a name can be
associated with it, and the user mode can access it to cause the
operating system to mount the device. After the device object
has been mounted, the kernel mode driver can begin to service
read operations targeted on the device object.

In accordance with an embodiment, a read operation may
be received from the I/O manager and serviced by the kernel
mode driver. Generally, the read operation specifies a starting
read offset and a length of the read. Once the kernel mode
driver receives the read operation, the kernel mode driver can
write the starting read offset and the length to a memory
section that is shared between the kernel mode driver and the
user mode application. After the starting offset and the length

US 9,280,423 B1

3

of the read operation has been written to the shared memory
section, the kernel mode driver can issue an event to the user
mode application, indicating that the read operation has been
received.

In response to the event, the user mode application reads
data from the backup image and copies the data to the shared
memory section. In order to read the data from the backup
image, the user mode application may need to convert the
starting read offset of the read operation into the starting read
offset of the backup image. For example, it may be that the
read operation specifies a volume level offset and the user
mode application may need to convert the volume level offset
into a disk level offset to be used on the backup image. Once
the user mode application has converted the offset, it can use
the converted offset to read the correct data from the backup
image and copy it to the shared memory section, where the
kernel mode can access the data. After the user mode appli-
cation has copied the data to the shared memory section, it
issues an event to the kernel mode driver, indicating that ithas
completed the read operation and that the data is in the shared
memory section. In response to receiving the event, the kernel
mode driver copies the data from the shared memory section
to a system buffer that has been designated by the /O man-
ager and completes the read operation.

FIG. 1 illustrates an example 100 of a block level backup
application copying data from a source volume to create a
block level backup image, in accordance with various
embodiments. As previously described, the block level
backup application 103 can bypass the file system of the
source volume 102 and perform backups of the entire source
volume 102. One advantage of bypassing the file system in
such a manner is that if the source volume contains a large
number (e.g., thousands) of files, there is no penalty in per-
formance which would otherwise be incurred if performing
file-level backup. Once the block level backup application
103 finishes copying the data from the source volume to the
backup storage server 104, the resulting entity on the backup
server is the entire backup volume image 105. The backup
volume image 105 implicitly preserves the file system layout
of the original source volume 102, thereby eliminating the
need to generate and manage file indexes for granular recov-
ery.

Conventionally, the volume image format that the block
based backup application 103 may use varies depending on
several factors, such as the target operating system (OS) for
which backups are being generated, the maximum supported
size for block level backups and the ability of the underlying
operating system to mount it. A volume image canbe flator a
sparse volume image or even a disk image containing volume
data inside (again in both, fixed as well as sparse mode). As
discussed above, the eventual choice of the actual backup
image 105 format that is used generally depends on the ability
of the operating system to mount it. Mounting the backup
volume image 105 exposes the logical file system inside the
backup volume image 105 to the end user, allowing the end
user to perform granular recovery when the actual backup
was performed at volume level, i.e., by bypassing the file
system. So for example, a virtual hard disk (VHD) file in the
Microsoft Windows™ operating system is a virtual disk con-
tainer which is used for hosting file systems. Windows oper-
ating system has a native VHD image mount driver by the
name ‘“vhdmp.sys”. This is a component of the operating
system and is responsible for mounting logical volumes that
resides inside an overlaying disk image (VHD files). Conven-
tionally, the native VHD image mount, as supported by vhd-
mp.sys, may be limited to the scenario where the target VHD
file is accessible via, operating system’s direct file access

5

10

15

20

25

30

40

45

50

55

60

65

4

capability or via the redirector subsystem inside the kernel.
This implies that it can only mount VHD files which reside
either on an NITS volume or a CIFS share, both of which
should be exposed locally on the system. It would not be able
to support mounting of a VHD file backed up to a storage
server for which the OS has no API support. If, the operating
system’s vhdmp.sys mount driver does not have support for
the interfaces exposed by the storage server to pull data out,
the native VHD mount is not able to mount sucha VHD file or
read data from it.

Conventionally, the native OS mount may also be restric-
tive when it comes to the ability to mount a. VHD chain. In
this scenario, all individual parent VHDs whose relative paths
are embedded inside child VHDs must be accessible using the
same hard coded absolute or relative paths. This makes it
restrictive for the backup application in terms of the ability to
move incremental backups in a chain to alternate servers in
case the primary server runs out of storage space or for other
reasons. Furthermore, it supports only VHD files as the over-
laying disk image format as the container for the volume level
data. It would not conventionally support mounting a virtual
machine disk (VMDK) or a virtual desktop infrastructure
(VDI) disk image.

In light of such conventional restrictions, the various
embodiments described herein enable an approach to mount
block level backup images (e.g., VHD, VHDx, VMDK, VDI
etc.) on a conventional operating system, such as MS Win-
dows. These images, of arbitrary format, can be physically
residing on any arbitrary location as long as the server hosting
them exposes a read/seek interface on the image file. Further-
more, individual incremental backups in a chained series can
be on physically disjoint media. Specifically with respect to
VHD and VMDAKs, this effectively breaks the restriction of
preserving relative path layout of individual parent VHDs
required with the native OS mount, thereby enabling the
backup application to continue with incremental backups in
case the currently active backup server runs out of storage
space for holding subsequent incremental backups.

In various embodiments, one implementation of such an
approach may comprise a kernel mode driver and a user mode
application. These two components may work together to
enable the block level backup image to be mounted in the OS
and to enable read/write operations to be performed on the
block level backup image.

FIG. 2 illustrates an example 200 of a kernel mode driver
creating a device object that will serve as a target of /O
operations on the backup volume image 202, in accordance
with various embodiments. As shown in the illustration, the
kernel mode driver 204 (e.g., in its driver entry routine at time
T1) creates a named device object 203 of type FILE_DE-
VICE_DISK. The operating system 201 (e.g., Windows) rep-
resents physical devices by device objects. One or more
device Objects are associated with each physical device.
Device objects serve as target of all operations on the device.
As such, the device object 203 which the kernel mode driver
204 creates represents a logical volume device and becomes
the seed which would trigger subsequent mount process. At
this point the volume device is not yet mounted. This is
because the OS 201 would mount the volume only when the
corresponding logical volume device object 203 is accessed
and this can happen from either user mode or from inside the
kernel.

After the device object 203 has been created, at an arbitrary
forward time T2) the user mode application 205 associates an
arbitrary volume name (e.g., “KM719”) with the device
object 203 created by the kernel mode driver 204. This name
can be a simple string or a drive identifier (e.g., “T:”). Once

US 9,280,423 B1

5

this is performed, the device object 204 can be accessed from
the user mode application 205 using the operating system’s
naming convention as highlighted (e.g., “WAKM719\\”) and
the container file system’s root directory as WAKM719\.
Alternatively, in embodiments where a drive identifier has
been associated with the device object, the device object 203
can be accessed like any other volume that has a drive letter
associated with it.

After user mode application 205 process associates a name
with the device object 203, it “accesses” the device object 203
for the first time (e.g., using the name associated with it such
as “WNAKM719”) by sending a custom I/O control code, (e.g.,
Windows /O control code “IOCTL_BB_MOUNT”). The
handler of this I/O control code creates a number of event
objects and a section object and then maps a view of the
section object into the address space of the current process
(i.e., the process that is sending the 1/O control code). A
section object represents a section of memory that can be
shared. Memory view of the section object is used to hold
incoming data from user mode application 205, white event
objects are used for synchronizing data feed (by the user
mode application 205) and consumption (by the kernel mode
driver 204). Inside the kernel, on the very first access to a
device of disk type (e.g., FILE_DEVICE_DISK), the operat-
ing system attempts a file system mount on it. The volume
mount process involves invoking methods in the File System
Recognizer (FSR) component of the operating system 201,
which is responsible for detecting the type of file system
contained inside the media that is in the process of being
mounted.

In various embodiments, the process of invoking the FSR
component is performed by examining volume signatures on
the disk. The signature is a set of unique values located at a
particular byte offset from the beginning of the volume. When
the 1/0 Manager of the OS 201 finds a device object 203 for
a physical media device (e.g., a device with the type FILE_
DEVICE_DISK) that device object 203 will have a volume
parameter block (VPB) which will indicate if the volume has
been mounted. If it has been mounted, the VPB will point to
the device object 203 belonging to the file system. If it has not
been mounted, the I/O Manager will attempt to mount it by
invoking the FSR. The process of mounting is comprised of
the /O Manager calling each registered file system to claim
support for the volume (i.e., backup volume image 202)
inside the media. For example, in Windows OS,; this can be
done by calling the file system’s FS control dispatch entry
point with the minor function code “IRP_MN_
MOUNT_VOLUME”. The /O Manager then asks each file
system in turn if the volume can be mounted by that particular
file system. If a particular file system driver, (e.g., NTFS)
detects and claims the volume, then it starts sending read I/Os
(e.g., “IRP_MI_READ”) on the device object 203 which was
created by the kernel mode driver 204. File systems are typi-
cally called in last registered first called order. The minor
function code (e.g., IRP_MN_MOUNT_VOLUME) handler
for each file system attempts to read their file system recog-
nition structures from the on-media data by initiating read
operations (e.g., IRP_MJ_READ) to the device object 203
created by the kernel mode driver 204. If all checks are
successful, the file system driver claims ownership of the
volume and the File System Recognition phase is over. At this
point, a file system is logically layered on top of the volume
device object 203.

FIG. 3A illustrates an example 300 of receiving a read
operation and processing the read operation using a kernel
mode driver and a user mode application, in accordance with
various embodiments. In operating system 301, read opera-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions (e.g., IRP_MJ_READs) targeted on the device object to
read volume level data from the backup volume image 302 are
serviced in the kernel mode driver’s 304 read dispatch han-
dler (e.g., IRP_MJ_READ dispatch handler). As shown in the
illustration, upon receiving the read operation from the /O
manager 303, the kernel mode driver 304 creates a shared
memory section 305 and opens the same shared memory
section 305 from inside the user mode application 306. Two
(or more) named kernel event dispatcher objects are then used
to synchronize reads and writes to the shared memory section
305.

Subsequently, in response to receiving a read operation
(e.g., IRP_MJ_READ), the kernel mode driver 304 first cop-
ies the read offset and the length of the read operation into the
shared section 305. Notably, at this point, the read offset and
the length are volume level offsets. After the read offset and
length have been copied to the shared memory section, the
kernel mode signals event 1 to the user mode application 305
(indicating to the user mode application 305 that the read
operation has been received) and begins to wait for event 2
(i.e., the event that will be signaled by the user mode appli-
cation 305 once it completes the read).

A dedicated read thread in the user mode application 306
waiting for event 1 would then yield from its wait state
because of event 1 and proceed to execute the read operation
on the backup volume image 302 by taking the offset and
length currently written in the shared memory section 305.
Notably, in some embodiments, the user mode application
306 may need convert the read offset stored in the shared
memory section from volume level offset into a disk level
offset. The process for converting the read offset will be
described in further detail later in this disclosure.

FIG. 3B illustrates an example 320 of the user mode appli-
cation completing the read operation shown in FIG. 3A, in
accordance with various embodiments. As previously
described, the user mode application 306 performs the read
on the backup volume image 302 using the offset obtained
from the shared memory section 305. In one embodiment, the
output buffer of the read operation is the beginning of the
shared memory section 305. This means that the resulting
data read from the backup volume image 302 would be writ-
ten to the shared memory section 305. The read operation
itself can be any type of read on a file abstraction that supports
seeking. For example, the read operation may be, but is not
limited to, a file transfer protocol (FTP) read operation, a
secure file transfer protocol (SFTP) read operation, a hyper-
text transfer protocol (HTTP) read operation, or a data
domain boost (DD Boost) read operation, among others. The
user mode application 306 would physically present length
bytes of data from the requested offset into the shared
memory section 305 and then signal event 2, which would
signify the end of the read operation from the perspective of
the user mode application 306.

Once the read is performed by the user mode application
306 and the event 2 has been signaled, the kernel mode driver
304 (e.g., IRP_MJ_READ dispatch routine) waiting on event
2 would yield and would copy the data present in the shared
memory section 305 directly into the system buffer 310 (e.g.,
irp—>MdlAddress member of the read IRP) and eventually
complete the read request (e.g., by calling loCompleteRe-
quest).

As previously mentioned, in some cases the user mode
application may need to convert the volume level read offset
into a disk level read offset in order to perform the read on the
backup volume image. Conventionally, a volume image can
be a flat or a sparse volume image or even a disk image
containing volume data inside (in both fixed, as well as sparse

US 9,280,423 B1

7

mode). The read offsets received inside kernel, against the
logical volume device created by the kernel mode driver are
volume level offsets. Therefore, the user mode application
needs some kind of mechanism which converts these volume
level offsets to “inside the image file” offsets so that it can
read data at the latter offset from the image file and eventually
feed it to the kernel. For flat volume images, converting vol-
ume level offsets to image file offset is straightforward as the
backed up image file is in itself, the volume’s image, meaning
that a volume offset x received inside kernel would map
directly to image file offset x and so on. On the other hand, if
the volume is hosted inside an overlaying disk image, then the
task would include converting volume level offsets into disk
level offsets. To accomplish this, the user mode application
would need to find the volume’s “inside the overlaying disk
start offset” and then add this offset to the volume level offset
for which data is requested by the driver. The reads on the
backup volume image would then have to be done on this new
offset.

Various embodiments described herein modify the way
read operations (e.g., IRP_MJ_READs in Windows) are ser-
viced by an image mount driver. Instead of servicing read
request in kernel mode, while the dispatch handler (e.g.,
IRP_MIJ_READ dispatch handler) is executing (restrictive in
terms of the available file access API), the various embodi-
ments utilize a mechanism which moves this task to the user
mode which can have much more expansive support for such
file based APIs. For example certain storage servers’ read API
calls are file based APIs which operate only in user mode. For
these servers, kernel mode port may not be available. How-
ever, for those servers, the respective read function usually
exposes a combined read/seek interface which is functionally
equivalent to regular C runtime read/seek interfaces. As such,
the various embodiments described herein can allow such
servers to be utilized for storing block level backup images in
a simpler and more efficient manner.

Similarly there are a lot of user mode file transfer protocol
(FTP) libraries that allow programmatic access to data stored
on FTP servers. The user mode read thread which services the
read I/O request packets (e.g., IRP_MI_READ_IRPs) can
make use of these user mode FTP libraries to satisfy mount
driver’s read request on disk image data. Same holds true for
Web servers. Basically, image file mounts would be possible
using the techniques illustrated herein if the server that hosts
the image is capable of presenting a file read/seek abstraction,
as previously described. Furthermore, the use of a shared
memory section can ensure that there is minimal performance
impact as the output buffers used in the user mode reads are
directly the memory section shared by the kernel mode driver.
As such, the performance in this method would be as similar
to the performance of the underlying file access API used to
service the read request from the user mode. This method also
allows mounting of volume images on Windows operating
systems that do not support that particular image file format.
For example, Windows XP or 2003 server cannot mount VHD
or VHDXx files since the native VHD(x) mount driver (vhd-
mp.sys) was introduced starting Windows Vista and beyond.
The embodiments described herein are capable of exposing
the backed up volume image on such an operating system as
well.

FIG. 4 illustrates an example 400 of a process for process-
ing a read operation by the kernel mode driver, in accordance
with various embodiments. Although this figure as well as
other process flows contained in this disclosure may depict
functional operations in a particular sequence, the processes
are not necessarily limited to the particular order or opera-
tions illustrated. One skilled in the art will appreciate that the

25

40

45

55

60

8

various operations portrayed in this or other figures can be
changed, rearranged, performed in parallel or adapted in vari-
ous ways. Furthermore, it is to be understood that certain
operations or sequences of operations can be added to or
omitted from the process, without departing from the scope of
the various embodiments. In addition, the process illustra-
tions contained herein are intended to demonstrate an idea of
the process flow to one of ordinary skill in the art, rather than
specifying the actual sequences of code execution, which
may be implemented as different flows or sequences, opti-
mized for performance, or otherwise modified in various
ways.

In operation 401, a kernel mode driver is loaded on an
operating system of a computing device. For example, the
operating system may be a Microsoft Windows based oper-
ating system. Once loaded, the kernel mode driver creates a
device object to represent the block level backup image. The
backup image can be associated with a name for other iden-
tifier) and mounted by the operating system. In operation 402,
the kernel mode driver receives a read operation, e.g., as may
be received from an I/0O manager of the operating system. The
read operation may have an associated offset and length. In
various embodiments, the offset of the read operation is a
volume level offset.

Once the kernel mode driver receives the read operation, it
writes the offset and length of the read operation into a shared
memory section, as shown in operation 403. The shared
memory section is accessible by the kernel mode driver and a
user mode application. In at least some embodiments, the
shared memory section is allocated by creating a section
object in the Windows OS. A process can use a section object
to share parts of its memory address space (memory sections)
with other processes. The section object can be created by a
process in the kernel mode driver to share the memory section
with the user mode application.

In operation 404, once the kernel mode driver has written
the offset and length of the read operation into the shared
memory section, the kernel mode driver signals an event to
the user mode application. The event indicates to the user
mode application that the read operation has been received by
the kernel mode and the offset and length of the read operation
have been written to the shared memory section. In at least
some embodiments, the event can be implemented as a Win-
dows event object which is a synchronization object whose
state can be explicitly set to signaled by use of a SetEvent
function.

FIG. 5 illustrates an example 500 of a process for process-
ing the read operation by the user mode application, in accor-
dance with various embodiments. As shown in operation 501,
the user mode application detects the event signaled by the
kernel mode driver. For example, a dedicated read thread in
the user mode application waiting for the event from the
kernel mode driver may yield from its wait state as a result of
the event. In operation 502, the user mode accesses the offset
and length in the memory section and converts the offset from
volume level offset to disk level offset, as previously
described. In operation 503, the user mode application then
reads the data from the backup image. In one embodiment, the
data is read using the converted offset and the length obtained
from the shared memory section.

Once the read is performed, the user mode application
copies the data to the shared memory section, as shown in
operation 504. Once the data is written, the user mode appli-
cation signals an event to the kernel mode driver. This event
indicates to the kernel mode driver that the read has been
executed and that the data is now in the shared memory

US 9,280,423 B1

9

section. In response to the event, the kernel mode driver can
proceed to write the data to a system buffer to complete the
read request.

The various embodiments described throughout this dis-
closure can be utilized in a general purpose or specialized
computing device. FIG. 6 illustrates a logical arrangement of
a set of general components of an example computing device
600. In this example, the device includes a processor 602 for
executing instructions that can be stored in a memory device
or element 604. As would be apparent to one of ordinary skill
in the art, the device can include many types of memory, data
storage, or non-transitory computer-readable storage media,
such as a first data storage for program instructions for execu-
tion by the processor 602, a separate storage for images or
data, a removable memory for sharing information with other
devices, etc. The device typically will include some type of
display element 606, such as a touch screen or liquid crystal
display (LCD), although devices such as portable media play-
ers might convey information via other means, such as
through audio speakers. As discussed; the device in many
embodiments will include at least one input element 608 able
to receive conventional input from a user. This conventional
input can include, for example, a push button, touch pad,
touch screen, keyboard, mouse, keypad, or any other such
device or element whereby a user can input a command to the
device. In some embodiments, the computing device 600 of
FIG. 6 can include one or more network interface elements
608 for communicating over various networks, such as a
Bluetooth, RF, wired, or wireless communication systems.
The device in many embodiments can communicate with a
network, such as the Internet, and may be able to communi-
cate with other such devices.

Each computing device typically will include an operating
system that provides executable program instructions for the
general administration and operation of that device and typi-
cally will include computer-readable medium storing instruc-
tions that, when executed by a processor of the server, allow
the computing device to perform its intended functions. Suit-
able implementations for the operating system and general
functionality of the servers are known or commercially avail-
able and are readily implemented by persons having ordinary
skill in the art, particularly in light of the disclosure herein.

Various embodiments discussed or suggested herein can be
implemented in a wide variety of operating environments,
which in some cases can include one or more user computers,
computing devices, or processing devices which can be used
to operate any of a number of applications. User or client
devices can include any of a number of general purpose
personal computers, such as desktop or laptop computers
running a standard operating system, as well as cellular, wire-
less, and handheld devices running mobile software and
capable of supporting a number of networking and messaging
protocols. Such a system also can include a number of work-
stations running any of a variety of commercially-available
operating systems and other known applications for purposes
such as development and database management. These
devices also can include other electronic devices, such as
dummy terminals, thin-clients, gaming systems, and other
devices capable of communicating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting commu-
nications using any of a variety of commercially-available
protocols, such as TCP/IP, FTP, SFTP, UPnP, NFS and CIFS.
The network can be, for example, a local area network, a
wide-area network, a virtual private network, the Internet, an

10

15

20

25

30

35

40

45

50

55

60

65

10

intranet, an extranet, a public switched telephone network, an
infrared network, a wireless network, and any combination
thereof.

In embodiments where the computing device includes a
Web server, the Web server can run any of a variety of server
or mid-tier applications, including HTTP servers, FTP serv-
ers, CGI servers, data servers, Java servers, and business
application servers. The server(s) also may be capable of
executing programs or scripts in response requests from user
devices, such as by executing one or more Web applications
that may be implemented as one or more scripts or programs
written in any programming language, such as Java®, C, C#
or C++, or any scripting language, such as Perl, Python, or
TCL, as well as combinations thereof. The server(s) may also
include database servers, including without limitation those
commercially available from Oracle®, Microsoft®,
Sybase®, and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the informa-
tion may reside in a storage-area network (“SAN”) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers,
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware ele-
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, touch screen, or keypad), and at least one output
device (e.g., a display device, printer, or speaker). Such a
system may also include one or more storage devices, such as
disk drives, optical storage devices, and solid-state storage
devices such as random access memory (“RAM”) or read-
only memory (“ROM?”), as well as removable media devices,
memory cards, flash cards, etc.

Such devices also can include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device, etc.), and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium, representing remote, local, fixed, and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information. The system
and various devices also typically will include a number of
software applications, modules, services, or other elements
located within at least one working memory device, including
an operating system and application programs, such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard-
ware might also be used and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets); or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or trans-

US 9,280,423 B1

11

mission of information such as computer readable instruc-
tions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by a system device.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the various embodiments.
The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.
What is claimed is:
1. A computer implemented method for performing recov-
ery of data, the method comprising:
receiving a read operation at a kernel mode driver on an
operating system of a computing device, the read opera-
tion specifying a starting read offset and a length;

writing the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signaling a first event from the kernel mode driver to the

user mode application;

reading data from a backup image by the user mode appli-

cation according to the read offset and the length and
copying the data to the shared memory section in
response to the first event;
signaling a second event to the kernel mode driver; and
copying the data from the shared memory section to a
system buffer by the kernel mode driver in response to
the second event wherein each of the first event and the
second event is implemented as an operating system
event object that is associated with a state can be explic-
itly set to synchronize operations between two or more
components.
2. The computer implemented method of claim 1, wherein
the read operation includes at least one of:
a file transfer protocol (FTP) read operation;
a secure file transfer protocol (SFTP) read operation;
a hypertext transfer protocol (HTTP) read operation; or
a data domain boost read operation.
3. The computer implemented method of claim 1, wherein
upon loading, the kernel mode driver creates a device object
to represent the backup image, wherein the read operation is
issued on the device object.
4. The computer implemented method of claim 1, wherein
the starting read offset is a volume level offset and wherein the
user mode application converts the volume level offset into a
disk level offset for the backup image.
5. The computer implemented method of claim 1, wherein
the read operation enables file level recovery (FLR) from the
backup image.
6. A computer implemented method for performing recov-
ery of data, the method comprising:
receiving a read operation at a kernel mode driver on an
operating system of a computing device, the read opera-
tion specifying a starting read offset and a length;

writing the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signaling a first event from the kernel mode driver to the

user mode application;

10

15

25

30

35

40

45

50

55

60

65

12

reading data from a backup image by the user mode appli-
cation according to the read offset and the length and
copying the data to the shared memory section in
response to the first event;

signaling a second event to the kernel mode drivers; and

copying the data from the shared memory section to a

system buffer by the kernel mode driver in response to
the second event;

wherein upon loading, the kernel mode driver creates a

device object to represent the backup image, wherein the
read operation is issued on the device object;

wherein after the device object is created, the user mode

application sends a control code that causes a handler of
the control code to create the first event object, the sec-
ond event object and the shared memory section.

7. A computing system, comprising:

at least one processor; and

memory including instructions that, when executed by the

at least one processor, cause the computing system to:

receive a read operation at a kernel mode driver on an
operating system of the computing system, the read
operation specifying a starting read offset and a
length;

write the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signal a first event from the kernel mode driver to the
user mode application;

read data from a backup image by the user mode appli-
cation according to the read offset and the length and
copy the data to the shared memory section in
response to the first event;

signal a second event to the kernel mode driver; and

copy the data from the shared memory section to a
system buffer by the kernel mode driver in response to
the second event;

wherein each of the first event and the second event is

implemented as an operating system event object that is
associated with a state can be explicitly set to synchro-
nize operations between two or more components.

8. The computing system of claim 7, wherein the read
operation includes at least one of:

a file transfer protocol (FTP) read operation;

a secure file transfer protocol (SFTP) read operation;

a hypertext transfer protocol (HT'TP) read operation; or

a data domain boost read operation.

9. The computing system of claim 7, wherein upon loading,
the kernel mode driver creates a device object to represent the
backup image, wherein the read operation is issued on the
device object.

10. The computing system of claim 7, wherein the starting
read offset is a volume level offset and wherein the user mode
application converts the volume level offset into a disk level
offset for the backup image.

11. The computing system of claim 7, wherein the read
operation enables file level recovery (FLR) from the backup
image.

12. A computing system, comprising:

at least one processor; and

memory including instructions that, when executed by the

at least one processor, cause the computing system to:

receive a read operation at a kernel mode driver on an
operating system of the computing system, the read
operation specifying a starting read offset and a
length;

US 9,280,423 B1

13

write the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signal a first event from the kernel mode driver to the
user mode application;

read data from a backup image by the user mode appli-
cation according to the read offset and the length and
copy the data to the shared memory section in
response to the first event;

signal a second event to the kernel mode driver; and

copy the data from the shared memory section to a
system buffer by the kernel mode driver in response to
the second event,

wherein upon loading, the kernel mode driver creates a

device object to represent the backup image, wherein the
read operation is issued on the device object;

wherein after the device object is created, the user mode

application sends a control code that causes a handler of
the control code to create the first event object, the sec-
ond event object and the shared memory section.
13. A non-transitory computer readable storage medium
storing one or more sequences of instructions executed by one
or more processors to cause the one or more processors to:
receive a read operation at a kernel mode driver on an
operating system of a computing device, the read opera-
tion specifying a starting read offset and a length;

write the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signal a first event from the kernel mode driver to the user

mode application;

read data from a backup image by the user mode applica-

tion according to the read offset and the length and copy
the data to the shared memory section in response to the
first event;

signal a second event to the kernel mode driver; and

copy the data from the shared memory section to a system

buffer by the kernel mode driver in response to the
second event;

wherein each of the first event and the second event is

implemented as an operating system event object that is
associated with a state can be explicitly set to synchro-
nize operations between two or more components.

14. The non-transitory computer readable storage medium
of claim 13, wherein the read operation includes at least one
of:

10

15

20

25

30

35

40

14

a file transfer protocol (FTP) read operation;
a secure file transfer protocol (SFTP) read operation;
a hypertext transfer protocol (HT'TP) read operation; or
a data domain boost read operation.
15. The non-transitory computer readable storage medium
of claim 13, wherein upon loading, the kernel mode driver
creates a device object to represent the backup image,
wherein the read operation is issued on the device object.
16. The non-transitory computer readable storage medium
of claim 13, wherein the starting read offset is a volume level
offset and wherein the user mode application converts the
volume level offset into a disk level offset for the backup
image.
17. A non-transitory computer readable storage medium
storing one or more sequences of instructions executed by one
or more processors to cause the one or more processors to:
receive a read operation at a kernel mode driver on an
operating system of a computing device, the read opera-
tion specifying a starting read offset and a length;

write the starting read offset and the length to a shared
memory section between the kernel mode driver and a
user mode application;

signal a first event from the kernel mode driver to the user

mode application;

read data from a backup image by the user mode applica-

tion according to the read offset and the length and copy
the data to the shared memory section in response to the
first event;

signal a second event to the kernel mode driver; and

copy the data from the shared memory section to a system

buffer by the kernel mode driver in response to the
second event;

wherein each of the first event and the second event is

implemented as an operating system event object that is
associated with a state can be explicitly set to synchro-
nize operations between two or more components;

wherein upon loading, the kernel mode driver creates a

device object to represent the backup image, wherein the
read operation is issued on the device object;

wherein after the device object is created, the user mode

application sends a control code that causes a handler of
the control code to create the first event object, the sec-
ond event object and the shared memory section.

#* #* #* #* #*

